



## Strip-mining

#### Chandra Bhat,

Cons Gattuso and P. Joireman

RR Group Meeting

June 14, 2006

**Issue:** During the current mining process in the Recycler, i.e., the "Longitudinal Momentum Mining", occasionally the transverse emittances grow and life-time for the beam drops if both stochastic and e-cools are on.

Note: However, this problem did not show-up for the cases with new tune operating points (Alexey and Valeri).

- **Goals:** 1. Improve the mining process to eliminate emittance growth at the same time retain the quality of pbars for Tev shots good.
  - 2. Develop an ability for pilot shots.





Growth

Store 4590 Tune= 0.414/418 (H/V)

Luminosity = 150.3E30/cm<sup>2</sup>/sec



No growth

Store 4639 Tune= 0.451/468 (H/V)

Luminosity = 166.91E30/cm<sup>2</sup>/sec



<Emit(H,V) (MI) ~ ?? pi @ 8GeV ~ 2.4 pi @ 150 GeV



# **Emittance growth during mining**



Lionel PROST, et al. - WEAY02



- Emittance growth likely due to a quadrupole instability (see Burov et al., THAW07)
  - ☐ Growth rate  $\propto \kappa_{xy} I_e I_p$ , ( $\kappa_{xy}$  coupling parameter)
  - $\Box$  Increase tune split to reduce  $\kappa_{xy}$



#### Data before the shutdown



(from Lionel Prost)





# Some Remarks on the Current Mining Procedure



- After the last pbar transfer from the Accumulator cog the stack to the final mining location before the final cooling starts
  - $\rightarrow$ The pulse gap between 6 and 7 = 324 bkts
  - → The start point of barrier pulse 7 = 32
  - (Eliminate the steps in R6-state 53 which cogs the cold stack by 92bkts)
  - Thus we can eliminate undesirable disturbance of the cold core (and emittance growth) prior to the final mining.



### Strip-mining: 1st proposal



Cons Gattuso and P. Joireman





6

#### **Synchrotron Period and adiabatic process**



$$T_{s} = \frac{2T_{2}}{|\eta|} \frac{\beta^{2} E_{o}}{\left|\Delta \hat{E}\right|} + \frac{4\left|\Delta \hat{E}\right| T_{0}}{eV_{o}}$$







#### Rule of Thumb

Any rf manipulations is iso-adiabatic, if it is carried out in about 6-8 synchrotron oscillation periods.





#### Beam compression studies in the Recycler





#### ESME simulations of Compression and Cogging RR Barrier







Result of beam compression and cogging is that the core particles are affected more than the large  $\Delta E$  particles

Estimated LE growth of the leftover core is about 17%



# **Strip-mining: Improvement**







-150

ESME2004

-100

-50

# **ESME** simulations and Findings



With Gaussian Beam in energy coordinates



100

50

150

12- lun-2006

However, during cogging the core does the following



## RMSW=1.1 MeV Core during Cogging?







#### **Some Remarks**



- Strip-mining, in this form, can not select low emittance region of the phase-space, unlike the "Longitudinal Momentum Mining" in use.
  - ☐ Therefore, the beam has to be sufficiently cooled before mining.
  - ☐ How much we have to cool?:

MI demands the pbar longitudinal emittance to be  $\leq 2$  eVs/ 2.5 MHz bunch. Therefore, the beam has to be cooled in the Recycler <70 eVs before strip-mining shots to the Tevatron. If  $\sigma$  is not sufficiently small, and, do strip-mine, then we potentially cause poor coalescing efficiency in the Main Injector and Tevatron quench.  $\leftarrow$  Needs quantification

← Currently, with the electron cooling we are cooling the pbar beam in the Recycler to <70 eVs before Tevatron shots for beam intensity up to 450E10. So, strip-mining looks promising .

- Before any further LLRF requests we should quantify the emittance growths as a function of σ (Schottky) for different amount of cogg and barrier size. (see next page).
- If the above studies yield encouraging results then further improvements in LLRF morphing routines for strip mining is worth doing. Possibly we may benefit?



# **Study Plan**



(Study request sent to Stan Pruss on 6/10/06)

# Goal: Quantify the longitudinal emittance growth for "Strip-Mining"

**Plan:** Measure LE using Schottky and WCM before cogging and after cogging pbar beam in standard rectangular barrier buckets (6, 7)

Spacing between 6 and 7: 34, 288, 180, 108, 72 bkts Initial Sigma ~ 1, 1,5, 2, 2.5, 3, 3.5, 4.

Cog Rate: slow,

Cog by: 36 to 288 bkts (about 3-4 points)

Beam Intensity ~ 40 E10 pbars

Total study time: ~ 10-20 min for each measurements.